VX120+ READY FOR COMMUNICATION

The VX 120 + can be set up in a network to integrate with your patient management software and provide a variety of communication options to optimize your work flow.

- > Review results from any supported device (tablet, smartphone, etc.)
- > Print directly from your local or network printer
- > Customize your reports
- > Synchronize data, graphs, and maps for any examination
- > Communication enabled with other instruments

300 W

TABLE OF FEATURES / VERSIONS AVAILABLE

VX 110	ARK	WF	ТОРО		
Diagnostic 118	ARK	WF	ТОРО	ACA*	
Diagnostic 220		WF***	торо	ACA*	TONO
120+	ARK	WF	торо	ACA*	TONO
Diagnostic	ARK	WF	торо	ACA**	TONO

* ACA: Anterior chamber analisis ** ACA : Total surface analisis *** WF : corneal abberometry

Fully automated

- Fully automatic 3D and R/L eye alignments
- 7 types of automatic simultaneous measurements
- Operator independent measurements
- High reproducibility of measurements

Automatic alignment and measurement which allows

- High reliability for measurements
- Significant time savings
- Optimal comfort based on ergonomic design

Additional customers benefits

- Quick detection of refraction, higher order aberrations, and warning indications for measurements outside of normal parameters
- Easily transfer patient measurements to the doctor for
- A refined and highly accurate refraction due to advanced technology and added features
- Delegation of tasks
- As part of examinations of refraction and detection of high-order aberrations, possible suspicion of pathologies

TECHNICAL SPECIFICATIONS

GENERAL

Alignment Display Observation area Medical device directive Output

- XYZ automatic
- 10.1" (1 024 x 600) TFT screen Multi-touch screen
- ø 14 mm
- EC MDD 93/42/EC modified by directive 2007/47/EC
- RS232 / USB / VGA / LAN

POWER MAPPING AND REFRACTION

Spherical power range Cylinder power range Axis Measuring area Number of measuring points **Acquisition time**

- -20D to +20D • 0D to + 8D
- 0 to 180°
- Min. ø 2 mm Max. 7 mm (3 zones)
- 1,300 points • 0.2 sec
- Shack-Hartmann

PACHYMETRY, IC (IRIDOCORNEAL) ANGLE AND **PUPILLOMETRY**

Method

Method

Pachymeter measuring range Pachymeter resolution IC angle measuring range IC resolution **Pupil illumination**

- Continuous vertical scan with the Scheimpflug camera
- 150-1300 μm
- +/- 10 microns
- 0°-60°
- 0.1°
- Blue light 455 nm

RETROILLUMINATION

CORNEAL TOPOGRAPHY BY SPECULAR REFLECTION

Number of rings Number of measuring points Number of points analyzed Diameter of covered corneal area at 43D Measurement range Repeatability Method

- 24
- 6,144
- More than 100,000
- From 0.75 mm to more than 10 mm
- From 37.5 D to 56 D
- 0.02 D
- Placido rings

TONOMETER

Measurement range

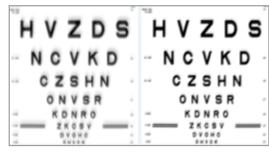
• 7 mmHg to 44 mmHg

Specific website http://www.visionix-vx120.com

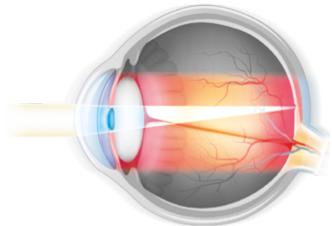
ONE-TOUCH HIGH-END REFRACTION VISION ANALYSIS, AND DIAGNOSIS OF THE ANTERIOR CHAMBER

VX 120+

UNIQUE DIAGNOSTIC DEVICE FOR THE ANTERIOR CHAMBER. **SCREENING AND ANALYSIS OF THE VISION**

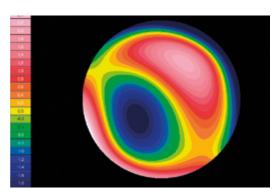

Make the difference thanks to the VX120+, complete and fully automatic diagnostic screening device. Complete refraction, differentiate between day and night vision needs, glaucoma, cataract, keratoconus identification and monitoring, fitting of contact lenses.

COMPLETE REFRACTION DIFFERENTIATE BETWEEN DAY AND NIGHT VISION NEEDS

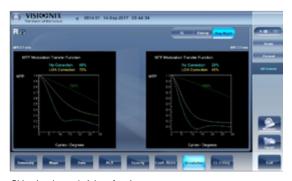

- > Objective day and night refraction measurements
- > 1300 points points analyzed for a 7-mm diameter pupil
- > Objective refraction under mesopic and photopic conditions
- > Measures lower-order and higher-order aberrations
- > Access visual acuity and quality of vision on a pupil as small as 1.2 mm
- > MTF curve

TECHNOLOGY:

Shack-Hartmann wavefront analysis

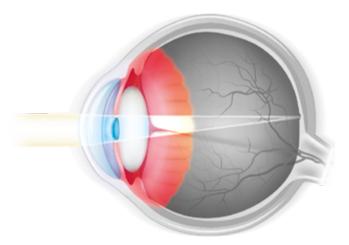


Simulations of visual acuity



Main screen

Shack-Hartmann wavefront maps measure lower-order and higherorder aberrations


Objective day and night refraction measurements Analysis of aberrations with Zernike coefficients

GLAUCOMA IDENTIFICATION AND MONITORING

- > Anterior chamber analysis
- > Automatic measurement of iridocorneal angles
- > Measurement of anterior chamber volume
- > Measurement of anterior chamber depth
- > Measurement of IOP (intraocular pressure)
- > Measurement of corneal thickness
- > Corrected IOP as a function of corneal thickness

TECHNOLOGY:

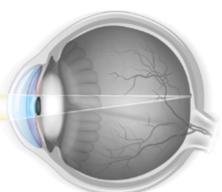
Scheimpflug imaging and non contact tonometer with soft air puff.

Anterior chamber analysis

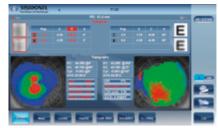
Main screen

Tonometry analysis: Corrected IOP as a function of corneal thickness

KERATOCONUS IDENTIFICATION AND MONITORING


Topography maps

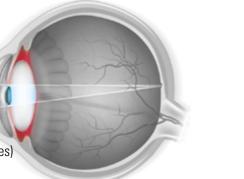
- > Axial, tangential elevation and refraction maps
- > Keratoconus probability index (KPI)
- > Keratoconus monitoring
- > Internal astigmatism measurement
- > Eccentricity and meridian tables
- > Corneal aberrometry



TECHNOLOGY:

Wavefront analysis with Shack-Hartmann technology, Placido rings, Scheimpflug imaging

Meridian Table

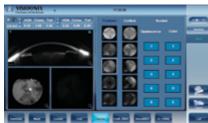

Keratoconus probability

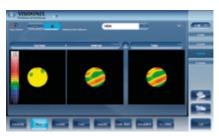
Main screen

IDENTIFICATION OF A CATARACT

- > Visualization of crystalline opacities
- > Analysis of wavefront aberrations, with the ability to separate corneal and lenticular/internal aberrations
- > Internal astigmatism measurement
- > Kappa angle for IOL centering
- > Z.4.0 value for aspheric implant
- > Lens opacity classification (LOCS II and III scales)

TECHNOLOGY:


Scheimpflug imaging, Retroillumination, Shack-Hartmann, Placido rings


Main screen

Opacity monitor

Visualization of crystalline opacities and LOCS scales

Analysis of wavefront aberrations, with the separation between corneal and lenticular/internal aberrations